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Abstract. We study the critical properties of the randomly bond-diluted q-slate Potts ferro- 
magnetic and antiferromagnetic models for a family of infinitely ramified exact fractals. 
Within Migdal's approximation we investigate the influence of bond dilution on the phase 
diagrams, andwecalculate the dependenceofthecriticalexponentsupon fractal geometries. 

1. Introduction 

In recent years, much interest has been devoted to the study of phase transitions on 
fractal lattices. These have been studied using exact real-space renormalization group 
techniques (Nelson and Fisher 1975, Dhar 1977, Gefen et a1 1980, Melrose 1983, Hu 
1985), approximate renormalization schemes using bond moving (Gefen et a1 1983, 
1984, RieraandChaves 1986, HaoandYang1987),andmorerecently withMonteCarlo 
techniques (Bhanot et a1 1984, 1985, Bonnier et a1 1987) and finite-size scaling theory 
(Dhar 1988). These studies showed that the critical properties of spin systems on fractals 
depend, apart from the fractal dimension D, on other geometrical parameters such 
as the connectivity Q and the lacunarity L that distinguish self-similar fractals from 
translationally invariant lattices with the same non-integer D. By translationally 
invariant lattices with the same non-integer D we mean the usual analyticcontinuation 
around a critical dimension, such as the continuous E-expansionsin the theory of critical 
phenomena (Wilson and Fisher 1972). 

Works so far have focused on the critical behaviour of non-random systemsfor these 
fractals. A relatively small number of papers (Boccara and Havlin 1984) have been 
devoted to studying the influence of geometrical factors on the critical properties, for 
systems in the presence of bond inhomogeneity. It is our purpose to fill this gap. 
We exhibit some rather simple calculations to study the criticality associated with the 
quenched bond-diluted q-state Potts ferromagnet (FM) and antiferromagnet (AFM) on 
Sierpinski carpets. We investigate the influence of bond dilution on the phase diagrams 
and we calculate the dependence of the critical exponents upon fractal dimension and 
lacunarity, using an approximate real-space renormalization group method based on 
the Migdal-Kadanoff (MK) recursion relations (Mgdal 1975, Kadanoff 1976). This 
problem has been studied extensively for regular Euclidean lattices and temperature 
concentration phase diagrams have been calculated for these systems (Wu 1980). For 
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the family of fractals which will be described below we found similar phase diagrams, 
and the percolation behaviour is characterized by a bond percolation k e d  point and its 
associatedeigenvalue exponent whose variation with fractalgeometries issimilar to that 
of the critical temperature and thermal exponent, which was shown previously for the 
Ising and the Potts models. 

The present work is organized as follows. In section 2 we describe the construction 
of fractal lattices and introduce the geometrical parameters (fractal dimension and 
lacunarity) characterizing these systems. Section 3 is devoted to an analysis of the Potts 
model on large-lacunarity carpet families. In section 4 we perform a renormalization 
group scheme which enables us to consider both large- and small-lacunarity carpets. We 
draw our final conclusions in section 5 .  

2. Construction of the fractal lattices 

The fractal lattices studied in this paper are the Sierpinski carpets which are charac- 
terized, in addition to their non-integer fractal dimensionality D (1 < D < 2 ) ,  by an 
infinite order of ramification which exhibits phase transitions at finite temperatures and 
non-trivial percolation thresholds. They are constructed by asubdivision of a unit square 
into b’ subsquares, out of which P squares are cut ( b  and I being integers, I =z b - 2). 
This procedure is then repeated for the smaller squares and iterated until one obtains the 
fractallattice in the limit ofaninfinite number ofiterations. ThefractaldimensionalityD 
as a function of the scaling factor b is given by 

D = In (b’ - 12)/ln (6). (2.1) 
Thus the Sierpinski carpets are characterized by specific values of 6 and I. Letting 6 have 
a large value and varying I, one may construct carpets with D arbitrarily close to any 
value between 1 and 2. 

In order to characterize the geometry of these fractals, one needs an additional 
parameter, the lacunarity L. Its intended function is to measure the extent of the failure 
of a fractal to be translationally invariant or the degree of homogeneity of a fractal. In 
the following, we shall be interested in cases in which the P holes made at each step of 
construction of the fractal lattices are chosen in two ways, leading to geometries with 
different lacunarities: either they are condensed at the centre of the squares (cor- 
responding to a large-lacunarity family), or they are distributed throughout each square 
(small-lacunarity family). Examples of these are presented in figures l(a) and l (b ) ,  
respectively for b = 7 and I = 3 after two steps of the iterative procedure. 

An approximate expression for the lacunarity of Sierpinski carpets was proposed by 
Gefen el a1 (1984): 

where 

(2.3) 

Here n(l) is the total number of I x I cells contained in a square of b x 6 cells, and n,(l) 
thenumberof uneliminatedcellsfor theithl X lcovering. Thisexpression wasimproved 
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(Lin and Yang 1986, Wu and Hu 1987, Taguchi 1987, Wu 1988) to make its zero value 
a necessary and sufficient condition for a translationally invariant fractal, and to reflect 
the relative homogeneity of the carpets. Thus the following alternative expression for 
lacunarity was proposed (Wu and Hu 1987, Wu 1988): 

where 

(2.5) 

Since (b2 - 12)/b2 is the fraction of uneliminated area, Z ( s )  provides a measure of 
uneliminated area in an s x s covering. 

3. Recursion relations and results for large-lacunarity carpet families 

Once the iterated procedure of lattice construction reaches a microscopic scale, we place 
at each site i of the fractal (including those which border the eliminated areas) a Potts 
variable which can be in any of q different states and is assumed to interact with its 
nearest neighbours. The appropriate Hamiltonian (in units of 1/p = kB7') is 

-PH = 7 E Kb(q6uiui - 1) (3.1) 
(ill 

where the + and - signs correspond to a FM and an AFM, respectively. The sum runs 
over all pairs of first-neighbour sites on the fractal, and K y  is a random variable with the 
following probability distribution: 

9 ( K c )  = (1 - p)6(Ka) + p S ( K ,  - K )  K > O  (3.2) 
wherep is the concentration of bonds and K the coupling of the pure system. 

Before constructing the renormalization group recursive relations, let us associate 
with every bond characterized by an arbitrary coupling constant Kii, a convenient 
variable defined as follows: 

tii = [I - exp(3 q K i j ) ] / [ l  + (q - 1) exp(s qKii)J = f ( K v )  (3.3) 

where the - and + signs correspond to a FM and an AFM, respectively. Note that the 
variabletisfiniteatbothK+O(t=O)andK+m(t= l f o r a m a n d r =  -l/(q - 1)for 
an AFM) . 

The renormalization group equations are obtained using the usual bond-moving 
procedure which consists of first performing the decimation and then moving the bonds. 
Thus for a one-dimensional pure Potts model the exact recursion relation is 

f =  t b  (3.4) 
where f is the renormalized interaction, 
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Figure 1. Sierpinski carpet with b = 7.1 = 3 after 
two steps of latlice construction: (a) holes con- 

., . , 
out the squares (small-lacunarity family). 

For a two-dimensional square lattice the Migdal recursion relation is 

t' =f[bf-l(tb)]. (3.5) 

For the fractal family described in figure l(a) (large-lacunarity family) instead of having 
b paths we have only b - [paths, and consequently the approximate Migdal relation is 

I' =f[(b - r ) f " ( t b ) ]  (3.6) 

The recursion relation (3.6) has three fixed points: I = 0, t = 1 for a FM ( t  = -l/(q - 1 )  
for an AFM) and t = t,(b, I ,  4). The first two are stable and correspond to the infinite- 
and zero-temperature phases. respectively. The third is unstable and characterizes the 
paramagnetic-to-ferromagnetic ( paramagnetic-to-antiferromagnetic) phase transition. 

If the b interactions of each of the b - I paths are random variables, the analogues 
of equation (3 .6)  determine each new local coupling in terms of a set of original 
couplings {ti;}: 

b - l  

(3.7) 

If each f,i is independently distributed according to the probability distribution 9(tv) 
given in (3.2). then the probability distribution 9'(t&) for the renormalized coupling is 
governed by 

F"(t&) = n dr, 9(r i jS [ r ;a  - t&({te})] .  (3.8) 

Although initially thc couplings are either present or absent corresponding to the two- 
peaked distribution (3.2). they do not remain so under iterations. A straightforward but 
tedious analysis of all the possible values for the interactions taking into account their 
respective probabilities gives the expression for the renormalized probability dis- 
tribution ??"(r&) which is not of the same form as the initial one: 

(8) 

b - l  

9'(t$ = E C;-'(pb)"(l -pb)b-'-"S [ t &a -f("b))l. (3.9) 
m = 0  

To render the computations tractable we make an additional approximation at each 
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FigureZ. Phase diagramsin the (1. p)-space 1 \.ir ' 1 1: ' fortheferromagneticPottsmodelonSier- 
pinski carpets: (a) b = 3, I = 1; (b)  b = 5, 0.8 0.9 I 

D 0 1 = 3 .  0.8 e 9 1 

(a1 l b l  

iteration by forcing the transformed distribution to a two-peak form (Stinchcombe 
1983): 

(3.10) 

Equating the zero and first moments of 9'(tk0) and 9):ppml(tL8) gives the recursion 
relations for the variablesp and f within the two-peak approximation: 

p' = 1 - (1 - pb)b-'  (3.11) 

p't' = Ci-'(pb)m(l - pb)b-'-mf[mf-'(tb)l. (3.12) 

As usual for dilute systems the renormalied concentrationp' given by (3.11) depends 
only upon the initialp but not on t .  Therefore the linearization of the recursion relations 
(3.11) and (3.12) around the fixed points enables us to deduce the critical exponents 
through the relation 

(a /~ ' / d /~ ) l , p  = b'r (3.13) 

where p can be t orp. 
Thus the two derivatives that will be needed here are ap'/ap and at'/at which show 

explicitly the dependence of critical exponents upon the fractal dimensionality D .  
Indeed, for b fixed and varying 1, which implies a variation in D, one obtains different 
critical exponents. 

9:ppmx(tkj3B) = (1 - "tkd + P ' W P  - t'). 

b - l  

m=O 

3.1. Results for  ferromagnetic interaciions 

By iterating the renormalization group equations (3.11) and (3.12) in the ( t , p )  plane, 
one obtains the qualitative phase diagrams displayed in figure 2 for the following cases: 
in figure 2(a), b = 3,1= 1; in figure 2(b), b = 1 + 2,1# 1. In both cases the full curves 
EF represent the critical lines separating the disordered phase from the ordered phase. 
The critical point characterizing this transitionis represented by the fixed point F, except 
at the t = 1 line which is characterized by the k e d  point E. The (t, p )  coordinates of the 
k e d  points are 

E: (1, P c )  F: ( I C .  1) 

with the values tc andp, which are given in table 1 for each pair of b and I ,  and for several 
values of q. Note that, within the approximationdescribed above, the recursion relations 
are close for a general number of Potts states but implicitly assume a second-order phase 
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Table 1. Results for the ferromagnetic Potts model on Sierpinski carpets with central cut- 
outs. 

3 1 1.893 2 
3 
4 

5 1 1.975 2 
3 
4 

5 3 1.723 2 
3 
4 

7 1 1.986 2 
3 
4 

7 3 1.896 2 
3 
4 

7 5 1.633 2 
3 
4 

0.7861 
0.7463 
0.7172 

0.7511 
0,7196 
0.6969 

0.9210 
0.8988 
0.8813 

0.7772 
0.7514 
0.7329 

0.8406 
0.8150 
0.7963 

0.9594 
0.9460 
0.9348 

PC 

0.8483 
0.8483 
0.8483 

0.8029 
0.8029 
0.8029 

0.9514 
0.9514 
0.9514 

0.8195 
0.8195 
0.8195 

0.8813 
0.8813 
0.8813 

0.9765 
0.9765 
0.9765 

YT Y P  

05619 0.4730 
0.6194 0.4730 
0.6617 0.4730 

0.6707 0.5589 
0.7379 0.5589 
0.7858 0.5589 

0.4139 0.3672 
0.4479 0.3672 
0.4747 0.3672 

0.6828 0,5738 
0.7474 0.5738 
0.7930 05738 

0.5942 0.5014 
0.6510 0.5014 
0.6919 0.5014 

0.3491 0.3189 
0.3728 0.3189 
0.3921 0.3189 

.,_- "..L 1"1 

transition which is expected to hold for q less than or equal to a critical value qc. For 
fractal lattices the q,-values are unsolved. Therefore we show explicitly our results with 
q = 2.3.4. As we vary q ,  the above picture does not change, although the location of 
the critical line can change. Thus the qualitative phase diagrams are similar for any 
number of Potts states and in the particular case q = 2 we recover the results obtained 
by Boccara and Havlin for the king model. 

Table 1 also shows the critical exponents y,  and y p  associated with the non-trivial 
fixed points for large-lacunarity carpet families. By inspection we note their variation 
with the fractal dimension. Indeed forb fixed and varying I ,  both uT and u p  increase as 
D decreases, irrespective of the number of Potts states. If we had focused on thc 
dependence of r, and p c  upon D, we would have found the same variation. Thus the 
fractal dimension causes an effect on pc  and up  similar to that on rc and vT ,  which was 
shown previously for the king and the Potts models. On the other hand, for a given 
lattice (band [fixed), uT decreases asq increases, while u p  remains constant. 

3.2. Results for antiferromagnetic interactiom 

For the antiferromagnetic model, equation (3.12) exhibits a cut-off value qa(2 < qo < 3) 
above which there is only the paramagnetic phase, whereas for q S qo the system 
exhibits a low-temperature critical phase, as suggested for hypercubic lattices (Berker 
and Kadanoff 1980). As a consequence the AFM on fractal lattices has a phase transition 
only for q = 2. This result is consistent with the fact that, for q 2 3, the ground state 
of the model has a non-zero entropy. 
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ldl 
10, 

Figurr 3. Phase diagrams in the 
b = 3,1= 1 ; ( b )  b = 5 , l =  3. 

q)-space for the antiferromagnetic Potts model: (a )  

Table 2. Results for the antiferromagnetic Pons model on Sierpinski carpets with central 
C U t i l U b .  

b l D  4 4 P* Y? Y P  

3 1 1.893 2 -0.7861 0.8483 0.5619 0.4730 

5 1 1.975 2 -0.7511 0.8029 0.6707 0.5589 
5 3 1.723 2 -0.9210 0.9514 0.4139 0.3672 

7 1 1.986 2 -0.7772 0.8195 0.6828 0.5738 
7 3 1.896 2 -0.8406 0.8813 0.5942 0.5014 
7 5 1.633 2 -0.9594 0.9765 0,3491 0.3189 

Thephasediagramsin the ( t ,p,  4)-space areshowninfigure3forthefollowingcases: 
in figure 3(a),  b = 3,1= 1; in figure 3(b) ,  b = 1 + 2 , 1 #  1. The (t,p)-coordinates of the 
non-trivial fixed points are 

E: (-l ,p*) F ( tc  , 1). 

We find that the percolation thresholdp* at which the critical temperature goes to zero 
depends upon q. Indeed, for q = 2 (Ising model),p* is equal top, which characterizes 
the bond percolation fixed point of the ferromagnet model while, for 2 < q 40,  p* 
increases fromp, as q increases from 2. This result is similar to that obtained on regular 
Euclidean lattices (Wu 1980). 

We summarize our numerical results in table 2, which shows the critical exponents 
around E and F for the antiferromagnetic Ising model. For each pair of b and I ,  
characterizing various carpets, we calculate the critical exponents which depend 
explicitly on the fractal dimension as shown for the ferromagnetic model. 

4. Recursion relations and results for large- and small-lacunarity carpet families 

In order to establish the recursion relations for both large- and small-lacunarity carpet 
families, it is necessary to distinguish two sorts of nearest-neighbour bonds: those on the 
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la1 lbl IC1 

Figure 4. Phase diagrams for Sierpinski carpets with a central cut-out: ( a )  b = 3, i = 1; 
(b)  b = 7,i = 5; (c) b = 7,1=3. 

boundary of a cut-out, K,; internal bonds, K. For convenience we shall represent the 
recursive relations in terms of the appropriate variables t and I, (defined by (3.3)) 
associated with bonds of strength Kand K,, respectively. 

We specialize the following to the ferromagnetic model. When the system is homo- 
geneous, the generalization of the recursion relations for the case in which a single large 
square, of size 1 X I ,  is eliminated in the centre of each larger square (figure l(a)) yields 
I' = f [ ( b  - I - l)f-'(tb) 3. 2f1(tb-'tlW) + (I- l)f'(fb-')] (4.1) 
I& =fv'(lk) + [ (b  - 1 - 2)/2]ft(lb) +ft(tb-'t:) + [ ( I  - 1)/2]ft(lb-')}. (4.2) 
Note that within Migdal's approximation the recursion relations are within the two- 
dimensional parameter space (1 ,  t-). In the particular case 1 = 0 we recover the d = 2 
results. The (r, r,)-coordinates of the fixed points are 

A:(O,O) B ( 0 , l )  C ( 1 , l )  E ( t E , l )  F : ( I ~ , I \ ) .  (4.3) 
We find three distinct flow diagrams, in the (f, rw)-space, as shown in figure 4. Figure 
4(a) shows the special case b = 3, 1 = 1, which differs from all the cases with b = 
1 + 2 > 3. Figures4(b) and4(c) correspond to b = 1 + 2 = 7 and b > 1 + 2 ( b  = 7.1 = 3), 
respectively. As we vary q ,  the critical line is displaced but the overall picture is the 
same. Thus the qualitative phase diagramsobtained are similar for any number of Potts 
states. 

In addition to this analysis, we iterated the recursion relations numerically and 
identified the locations of the fixed points E and F and their associated exponents. The 
numerical results are summarized in table 3. For each pair of b and I ,  and for several 
values of q (where the MK approximation predicts a second-order phase transition), the 
table lists D, tE and the exponents near E, the coordinates of F and the exponents near 
F, and the critical value I~ at which the critical line crosses the diagonal (1, = f = fw). 

A general result obtained from this calculation is the monotonic variation in the 
critical exponents and critical temperature with the fractal dimension, as shown in the 
previous section. One exception is the special case b = 3, I = 1, where the exponent 
associated with F does not obey the monotonic decreases with q. 

uniformly distributed throughout each square (figure l(b)), then we would have found, 
instead of (4.1) and (4.2), recursion relations of the following form: 

If we had focused on small-lacunarity carpets, where the eliminated subsquares are . 

I' = f [ f ' ( t b )  + (b - l)f1(tb-'tw)] 
1:. =f[f'(&) + (b  - 1 - l)f-'(tb-'f~)J. 

(4.4) 
(4.5) 
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b l D  q r E  r: I F  t:. r: 4 

3 1 1.893 2 
3 
4 

7 3 1.896 2 
3 
4 

7 5 1.633 2 
3 
4 

11 3 1.967 2 
3 
4 

11 5 1.903 2 
3 
4 

11 9 1.538 2 
3 
4 

0.4354 
0.4027 
0.3795 

0.6267 
0.5976 
0.5766 

0.1682 
0.1588 
0.1515 

0.7838 
0.7631 
0.7482 

0.7098 
0.6853 
0.6675 

0.1003 
9.645 X lo-' 
9.317 x 

0.5976 
0.6587 
o.mza 
0.6315 
0.6552 
0.6928 

0.3466 
0.3723 
0.3931 

0.6629 
0.7188 
0.7576 

0.5943 
0.6432 
0.6772 

0.2862 
0.3014 
0.3144 

1 
1 
1 

0.7254 
0.6977 
0.6776 

0.2552 
0.2374 
0.2242 

0.8119 
0.7925 
0.7785 

0.7552 
0.7314 
0.7142 

0.1256 
0.1199 
0.1152 

2.944 X IO" 
2.509 X 
2.145 X 

0.3865 
0.3346 
0.2997 

0.1297 
0.1152 
0.1047 

0.4745 
0.4181 
0.3789 

0.4380 
0.3863 
0.3506 

6.307 X 
5.865 x 10-2 
5.509 X 10" 

0.5998 0.6827 
0.9998 0.6414 
0.9998 0.6119 

0.5988 0.7013 
0.6497 0.6729 
0.6853 0.6525 

0.3466 0.2551 
0.3723 0.2374 
0.3931 0.2241 

0.6576 0.8010 
0.7119 0.7809 
0.7497 0.7665 

0.5883 0.7469 
0.6350 0.7234 
0.6674 0.7063 

0.2847 0.1256 
0.3023 0.1199 
0.3170 0.1152 

f.. 

'D 0 I t  W. 

Figure 5. Phase diagram for a Sierpinski carpet 
with a scattered cut-out: b = 7, 1 = 3 (cf figure b 0 

These relations have been obtained for the case 1 = (b - 1)/2. The qualitative phase 
diagram obtained in the low lacunarity case is shown in figure 5. Although this figure 
was calculated for b = 7 and 1 = 3, which has the same values as figure 4(c), the fixed 
point F now lies on the f = 1 axis. An analysis similar to that presented for large- 
lacunarity carpets, together with numerical calculations, yields table 4. We note the 
variation in the critical exponents when we keep D constant and vary L. Thus the 
exponent vF increases as L decreases. 

ForthePottsmodelinthepresence ofabondinhomogeneity,tandt,areindependent 
random variables distributed according to the following probability laws: 

9(t) = (1 - p)6( t )  + p6(t - t o )  

W w )  = (1 - P w ) 6 ( f w )  + P d ( L  - fw.d 
(4.6) 

(4.7) 
where p and pw are the bond concentrations for t and tw, respectively. The renor- 
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Table 4. Results for the Potu model on Sierpinski carpets where L was calculaled according 
lo (2.2) and (2.3). 

6 1  D L q fE r: fF C Y:.  4 

7 3 1.896 ~ 3.9377 Z~ 0.6267 o.aiS 0.7254 0.3865 0.5988 0.7013 

4 0.5766 0.698 0.6776 0.2997 0.6853 0.6525 

3 0.5391 0.6480 1 0.5675 0.4931 0.7753 

, , , - ~ II-_ *_ti*,- , , ~  
~~~~~ ~~ 

3 0.5976 0.6552 0.6977 0.3346 0.6497 0.6729 

7 3 1.896 0.9984 2 0.5675 0.5922 1 0.6031 0.4504 0.8006 

4 0.5186 0.6878 1 0.5420 0.5231 0.7570 

11 5 1.903 24.M9 2 0.7098 0.5943 0.759 0.4380 0.5883 0.7469 
3 0.6853 0.6432 0.7314 0.3863 0.63% 0.7234 
4 0.6675 0.6772 0.7142 0.3506 0.6674 0.7063 

11 5 1.903 3.9006 2 0.6519 0.59Ml 1 0.6998 0.4987 0.8470 
3 0.6275 0.6491 1 0.6701 0.5452 0.8283 
4 0.6098 0.6867 1 0.6488 0.5781 0.8148 

malization procedure transformsP(r) andP(r,) into P'(f') and P'(t:) which are of more 
complicated forms than the initial distributions. We approximate the transformed dis- 
tributions by those having the initial forms 

9;pprex(f') = (1 - p')6(t ' )  + p'6(r' - t ; )  

P;pprox(t3 = (1 -A)W&)  + P & m  - t:,o). 
(4.8) 

(4.9) 

Thisenablesustoobtain the recursion relationsfor thevariablesp,p,, tandt,. For the 
case b = 3.1 = 1 the recursion relations are 

p r =  1 - (1 -p3)(1 - p 2 p w ) 2  (4.10) 

p: = 1 - (1 - P:Kl - P 2 P w )  (4.11) 

p't' = p 7 p m - ~ ( t 3 )  + 2ri(r21,)1 + P 4 p w  - ~ ~ ) m - ~ ( r 2 t ~ ) 1  

+ 2PSPW(1 -P2Pw)f[f'(r') +f l(t2tw)l 

+ 2P2Pw( l  - P'W - P*Pw)f[f-'(~'tw)l 

+ p3(1 - (4.12) 

p:r; =p2p"wfIf '(ti) + f ' ( r * t d l  +P*PW(1 -P:)ftf '(f*tw)l 

+ P i u  - P2Pw)f[f-'(ti)l (4.13) 

Flows in a four-dimensional parameter space are not easy to visualize. To get a better 

(i) Subspace p = 1, pw = 1. This corresponds to the pure system. 
(ii) Subspace r = 1, r, = 1. The recursion relations (4.12) and (4.13) reduce, in this 

case, to (4.10) and (4.11) which describe the percolation behaviour. The same effect is 

where we have dropped the subscript 0 for simplification. 

understanding we shall consider some special subspaces. 
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Figure 6. Phase diagrams in the (p,pJspace: (a )  b = 3, l =  1; (6) b = 7, 1 = 3 (large 
lacunarity): (c) b = 7,1= 3 (small lacunarity). 

Table S. Fixed points and critical exponents characterizing bond percolation behaviour in 
the @.p.)-space. 

L b 1 Fixedpoints Critical exponents p c  = p = p. 

Small 7 3 
(F) 

p = 0.4893 
P l =  1 

p = l  
P w = O  

p = 0.6740 
P w = I  

p = 0.7699 
p. = 0.4795 

p = 0.6136 
P. = 1 

p = l  
pw = 0.6618 

y p  = 0.4987 

p. = 0.7508 
Y P = I  

y p  = 0.5101 

pr = 0.7480 
yp = 0.4891 

yp = 0.5001 

p c  = 0.8420 
yp = 0.3783 

found for b = 7 and I = 3, for both large- and small-lacunarity families. The cor- 
responding flow diagrams represented in figure 6 show a striking similarity to those of 
the pure system (figures 4 and 5 ) .  There are two non-trivial fixed points characterizing 
the percolation behaviour whose coordinates and corresponding critical exponents are 
given in table 5. When b = 7 and 1 =: 3, for example, the small- and large-lacunarity cases 
are described by different bond percolation fixed points pc  and different eigenvalue 
exponents+ Wenotealso theirvariation, whenwe keep Dconstant andvary L,similar 
to that of t,andy,for the pure system. 

(iii) Subspacep = p w .  Inthiscase, bondconcentrationsfortandt,areequaI. Asp = 
1 is an invariant subspace, the t- and t,-coordinates of the two non-trivial fixed points 
listed in tables 3 and 4 are not modified. The coordinates and critical exponents of the 
new fixed points characterizing the percolation behaviour are listed in table 6 for the 
case b = 3 and 1 = 1. The qualitative phase diagram in the (:t, f,p)-space, given by the 
recursion relations (4.10)-(4.13), is represented in figure 7. We find that the b e d  points 
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Table 6. Fixed pints and critical exponents characterizing bond percolation behaviour in 
the (f,  r.. p)-space forb = 3 and 1 = 1. 

b I Fixed p i n t s  Critical exponents 

1 = 1  

p = 0.6823 
(H) (,=I yp = o.M)82 

J P Figure 7. Phase diagram in the (I, I., p)-space for 
b = 3 and I = 1. 

Fand G of coordinates (tF, tE, 1) and (0, O,pG) characterize two transition surfaces. At 
a point of these surfaces the system exhibits a transition between the phases C(l, 1, l), 
O(O,O, 0) and A(O,O, l) ,  O(O,O,O), respectively. The fixed points E(tE, 1.1) and 
H(l, 1.p") represent transition lines at 1, = 1 and t = 1, respectively. 

5. Conclusion 

We have performed a renormalization group analysis for a dilute Potts model on 
Sierpinski carpets. We have investigated the influence of bond dilution on the phase 
diagrams and we have calculated the dependence of the critical exponents upon fractal 
dimension and lacunarity. We found that the diluted system and percolation behaviour 
ischaracterized by a bond percolation fixed point anditsassociated eigenvalue exponent, 
whose variation with fractal geometries is similar to that of the critical temperature and 
thermal exponent shown previously for both the Ising and the Potts models. 
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