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Abstract. We study the critical properties of the randomly bond-diluted g-state Potts ferro-
magnetic and antiferromagnetic models for a family of infinitely ramified exact fractals.
Within Migdal’s approximation we investigate the influence of bond dilution on the phase
diagrams, and we calculate the dependence of the critical exponents upon fractal geometries.

1. Introduction

In recent years, much interest has been devoted to the study of phase transitions on
fractal lattices. These have been studied using exact real-space renormalization group
techniques (Nelson and Fisher 1975, Dhar 1977, Gefen ef al 1980, Melrose 1983, Hu
1985), approximate renormalization schemes using bond moving (Gefen et af 1983,
1984, Riera and Chaves 1986, Hao and Yang 1987), and more recently with Monte Carlo
techniques (Bhanot e al 1984, 1985, Bonnier et al 1987) and finite-size scaling theory
(Dhar 1988). These studies showed that the eritical properties of spin systems on fractals
depend, apart from the fractal dimension D, on other geometrical parameters such
as the connectivity @ and the lacunarity L that distinguish self-similar fractals from
translationally invariant lattices with the same non-integer D. By translationally
invariant lattices with the same non-integer D we mean the vsual analytic continuation
around a critical dimension, such as the continuous £-expansions in the theory of critical
phenomena (Wilson and Fisher 1972).

Works so far have focused on the critical behaviour of non-random systems for these
fractals. A relatively small number of papers (Boccara and Havlin 1984) have been
devoted to studying the influence of geometrical factors on the critical properties, for
systems in the presence of bond inhomogeneity. It is our purpose to fill this gap.
We exhibit some rather simple calculations to study the criticality associated with the
quenched bond-diluted g-state Potts ferromagnet (FM) and antiferromagnet (AFM) on
Sierpinski carpets. We investigate the influence of bond dilution on the phase diagrams
and we calculate the dependence of the critical exponents upon fractal dimension and
lacunarity, using an approximate real-space renormalization group method based on
the Migdal-Kadanoff (MK) recursion relations (Migdal 1975, Kadanoff 1976). This
problem has been studied extensively for regular Euclidean lattices and temperature—
concentration phase diagrams have been calculated for these systems (Wu 1980). For
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the family of fractals which will be described below we found similar phase diagrams,
and the percolation behaviour is characterized by a bond percolation fixed point and its
associated eigenvalue exponent whose variation with fractal geometries is similar to that
of the critical temperature and thermal exponent, which was shown previously for the
Ising and the Potts models.

The present work is organized as follows. In section 2 we describe the construction
of fractal lattices and introduce the geometrical parameters {{ractal dimension and
lacunarity) characterizing these systems. Section 3 is devoted to an analysis of the Potts
model on large-lacunarity carpet families. In section 4 we perform a renormalization
group scheme which enables us to consider both large- and small-lacunarity carpets. We
draw our final conclusions in section 5.

2. Construction of the fractal lattices

The fractal lattices studied in this paper are the Sierpinski carpets which are charac-
terized, in addition to their non-integer fractal dimensionality D (1 < D <2), by an
infinite order of ramification which exhibits phase transitions at finite temperatures and
non-trivial percolation thresholds. They are constructed by asubdivision of a unit square
into b2 subsquares, out of which I squares are cut (b and ! being integers, I < b — 2).
This procedure is then repeated for the smalier squares and iterated until one obtains the
fractal lattice in the limit of an infinite number of iterations. The fractal dimensionality D
as a function of the scaling factor b is given by

D =in(b? — B)/in (b). @.1)

Thus the Sierpinski carpets are characterized by specific values of band [. Letting b have
a large value and varying /, one may construct carpets with D arbitrarily close to any
value between 1 and 2.

In order to characterize the geometry of these fractals, one needs an additional
parameter, the lacunarity L. Its intended function is to measure the extent of the failure
of a fractal to be translationally invariant or the degree of homogeneity of a fractal. In
the following, we shall be interested in cases in which the  holes made at each step of
construction of the fractal lattices are chosen in two ways, leading to geometries with
different lacunarities: either they are condensed at the centre of the squares (cor-
responding to a large-lacunarity family), or they are distributed throughout each square
(small-lacunarity family). Examples of these are presented in figures 1(a) and 1(b)},
respectively for b = 7 and I = 3 after two steps of the iterative procedure.

An approximate expression for the lacunarity of Sierpinski carpets was proposed by
Gefen et al (1984):

1 _

L= —(52 [n) = &DY (2.2)
where

_ 1

Al = ;1-(—52 n,(). (2.3)

Here n(!) is the total number of { x [ cells contained in a square of b X b cells, and n ()
the number of uneliminated cells for the ith ! X {covering. This expression was improved
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(Lin and Yang 1986, Wu and Hu 1987, Taguchi 1987, Wu 1988) to make its zero value
a necessary and sufficient condition for a translationally invariant fractal, and to reflect
the relative homogeneity of the carpets. Thus the following alternative expression for
lacunarity was proposed (Wu and Hu 1987, Wu 1988):

L= L0 (2.4)
where
172
1) = 775 (75 2 1) - 7 OF) 25)
and
7(s) = $2(62 — )5 2.6

Since (b? — I?)/b? is the fraction of uneliminated area, #'(s) provides a measure of
uneliminated area in an s X s covering.

3. Recursion relations and results for large-lacunarity carpet families

Once the iterated procedure of lattice construction reaches a microscopic scale, we place
at each site i of the fractal (including those which border the eliminated areas) a Potts
variable which can be in any of ¢ different states and is assumed to interact with its
nearest neighbours. The appropriate Hamiltonian (in units of 1/8 = kgT) is

~BH = % 2, K, (g60,0; — 1) (3.1)
iR
where the + and — signs correspond to a FM and an AFM, respectively. The sum runs
over all pairs of first-neighbour sites on the fractal, and K, is a random variable with the
following probability distribution:

P(K;)=(1—p)o(K;) + po(K,; — K) K>0 (3.2)

where p is the concentration of bonds and X the coupling of the pure system.

Before constructing the renormalization group recursive relations, let us associate
with every bond characterized by an arbitrary coupling constant K, a convenient
variable defined as follows:

ty = [1 = exp(F gK)|/[1 + (g — 1) exp(= gKp)] = fIK;) (3.3)

where the — and + signs correspond to a FM and an AFM, respectively. Note that the
variable tis finite at both K — 0 (t = 0) and K— o (t = 1forarMandt = —1/(g — 1) for
an AFM).

The renormalization group equations are obtained using the usual bond-moving
procedure which consists of first performing the decimation and then moving the bonds.
Thus for a one-dimensional pure Potts model the exact recursion relation is

F= gt (3.4)

where fis the renormalized interaction.
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Figure 1. Sierpinski carpet with b = 7, [ = 3 after
two steps of lattice construction: {&) holes con-
densed at the centre of the squares (large-
lacunarity family); (b) holes distributed through-
out the squares (small-lacunarity family).

For a two-dimensional square lattice the Migdal recursion relation is
¢ = flbf (%)), (3.5)

For the fractal family described in figure 1(#) (large-lacunarity family) instead of having
b paths we have only b — ! paths, and consequently the approximate Migdal relation is

! =fUb - Df ()] (3.6)

The recursion relation (3.6) has three fixed points: ¢ = 0,1 = 1forarm (t = ~1/(g — 1)
for an aArM) and ¢ = (b, /, ). The first two are stable and correspond to the infinite-
and zero-temperature phases, respectively. The third is unstable and characterizes the
paramagnetic-to-ferromagnetic ( paramagnetic-to-antiferromagnetic) phase transition.

If the b interactions of each of the b — / paths are random variables, the analogues
of equation (3.6) determine each new local coupling ¢4 in terms of a set of original
couplings {¢;}:

the = f[gf" (I]f[1 t,-,-)]. (3.7)

If each 1; is independently distributed according to the probability distribution @(z;)
given in (3.2), then the probability distribution $'(¢.s) for the renormalized coupling is
governed by

?'(to) = | TL ey 90,8002 ~ aCi D] 9

Although initially the couplings are either present or absent corresponding to the two-
peaked distribution (3.2), they do not remain so under iterations. A straightforward but
tedious analysis of all the possible values for the interactions taking into account their
respective probabilities gives the expression for the renormalized probability dis-
tribution P'(¢/5) which is not of the same form as the initial one:

b-1

P'(tig) = 2 Cor(pPY™(L = p*)P I Bty ~ flmf ()], (3.9)

m=0

To render the computations tractable we make an additional approximation at each
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iteration by forcing the transformed distribution to a two-peak form (Stinchcombe
1983):

P aoprox (tag) = (1 — p")8(15p) + p'8(t5p — 1) (3.10)

Equating the zero and first moments of %'(z,;) and &, (¢22) gives the recursion
relations for the variables p and ¢ within the two-peak approximation:

p'=1-(1-p"" (3.11)
b-{
Pt = 2 Clpyn (= b () (3.12)

As usual for dilute systems the renormalized concentration p' given by (3.11) depends
only upon the initial p but not on ¢. Therefore the linearization of the recursion relations
(3.11) and (3.12) around the fixed points enables us to deduce the critical exponents
through the relation

(8" /op) e = be (3.13)

where p can be ¢ or p.

Thus the two derivatives that will be needed here are dp’/dp and 9¢' /3¢ which show
explicitly the dependence of critical exponents upon the fractal dimensionality D.
Indeed, for b fixed and varying /, which implies a variation in D, one obtains different
critical exponents.

3.1. Results for ferromagnetic interactions

By iterating the renormalization group equations (3.11) and {3.12) in the (¢, p) plane,
one obtains the qualitative phase diagrams displayed in figure 2 for the following cases:
in figure 2(a), b = 3, I = 1; in figure 2(b), b =1 + 2, I # 1. In both cases the full curves
EF represent the critical lines separating the disordered phase from the ordered phase.
The critical point characterizing this transition is represented by the fixed point F, except
at the £ = 1line which is characterized by the fixed point E. The (¢, p) coordinates of the
fixed points are

E: (1,p.) F: (e, 1)

with the values #, and p, which are given in table 1 for each pair of b and /, and for several
values of g. Note that, within the approximation described above, the recursion relations
are close for a general number of Potts states but implicitly assume a second-order phase
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Table 1. Results for the ferromagnetic Potts model on Sierpinski carpets with central cut-

Outs.
b 1 D q & pe ¥r e
31 1893 2 0781 0.8483 05619  0.4730
3 07463 0.8483  0.6194  0.4730
4 07172 0.8483  0.6617  0.4730
5 1 1975 2 07511 0.8029 0.6707  0.5589
3 0719 08029 07379  0.5589
4 0699 08029 07858  0.5589
S 3 1723 2 . 09210 09514 04139 0.3672
3 08988 09514 04479  0.3672
4 08813 09514 04747 03672
7 1 198 2 0772 08195 0.6828 05738
3 07514 08195 07474 05738
4 07329 08195 07930 05738
7 3 180 2  0.8406 08813 0502  0.5014
3 08150 08813 0.6510 0.5014
4 07963 0.8813 0.6019 05014
7 5 1633 2 00594 09765 03491  0.3189
3 09460 09765 03728  0.3189
4

09348 09765 0.3921 0.3189

transition which is expected to hold for g less than or equal to a critical value g.. For
fractal lattices the g.-values are unsolved. Therefore we show explicitly our results with
q=2,3,4. As we vary g, the above picture does not change, although the location of
the critical line can change. Thus the qualitative phase diagrams are similar for any
number of Potts states and in the particular case g = 2 we recover the results obtained
by Boccara and Havlin for the Ising model.

Table 1 also shows the critical exponents yr and yp associated with the non-trivial
fixed points for large-lacunarity carpet families. By inspection we note their variation
with the fractal dimension. Indeed for & fixed and varying I, both »;and v increase as
D decreases, irrespective of the number of Potts states. If we had focused on the
dependence of z. and p. upon D, we would have found the same variation. Thus the
fractal dimension causes an effect on p, and vp similar to that on 1, and vy, which was
shown previously for the Ising and the Potts models. On the other hand, for a given
lattice (b and ! fixed), »r decreases as g increases, while ¥, remains constant.

3.2. Results for antiferromagnetic interactions

For the antiferromagnetic model, equation (3.12) exhibits a cut-off value g¢(2 < g4 < 3)
above which there is only the paramagnetic phase, whereas for g < g4 the system
exhibits a low-temperature critical phase, as suggested for hypercubic lattices (Berker
and Kadanoff 1980). As a consequence the AFM on fractal lattices has a phase transition
only for g = 2. This result is consistent with the fact that, for g = 3, the ground state
of the model has a non-zero entropy.
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Figure 3. Phase diagrams in the (¢, p, g)-space for the antiferromagnetic Potts model: {(a)

b=3,I=1;(b)b=5,[=3.

Table 2. Results for the antiferromagnetic Potts model on Sierpinski carpets with central

cut-outs,

b I D q % " yr Yp

3 b 1.893 2 —0.781  0.8483 05619  0.4730
5 1 1975 2 —07511  0.8029 06707  0.5589
5 3 1723 2 -09210 09514 04139 03672
7 1 198 2 -0.7772  0.8195 06828  0.5738
7 3 18% 2 —0.8406 08813 0.5%42 0.5014
7 5 1633 2 -0.9594 09765 0.3491  0.3189

The phase diagrams in the (7, p, ¢)-space are shown in figure 3 for the following cases:
in figure 3(@), b =3,/ = 1;infigure 3(b), b = { + 2,1 # 1. The (¢, p)-coordinates of the
non-trivial fixed points are

E:(—1,p% F: (7., 1)

We find that the percolation threshold p* at which the critical temperature goes to zero
depends upon g. Indeed, for ¢ = 2 (Ising model), p* is equal to p. which characterizes
the bond percolation fixed point of the ferromagnet model while, for 2 < g < ¢qq, p*
increases from p_ as g increases from 2. This result is similar to that obtained on regular
Euclidean lattices (Wu 1980).

We summarize our numerical results in table 2, which shows the critical exponents
around E and F for the antiferromagnetic Ising model. For each pair of b and /,
characterizing various carpets, we calculate the critical exponents which depend
explicitly on the fractal dimension as shown for the ferromagnetic model.

4, Recursion relations and results for Jarge- and small-lacanarity carpet families

In order to establish the recursion relations for both large- and small-lacunarity carpet
families, it is necessary to distinguish two sorts of nearest-neighbour bonds: those on the
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[a) [} (c

Figure 4. Phase diagrams for Sierpinski carpets with a central cut-out: () b=3,/=1,
B)b=7,1=5(c)b="7,1=3.

boundary of a cut-out, K,,; internal bonds, K. For convenience we shall represent the
recursive relations in terms of the appropriate variables r and #, (defined by (3.3))
associated with bonds of strength K and K, respectively.

We specialize the following to the ferromagnetic model. When the system is homo-
geneous, the generalization of the recursion relations for the case in which a singie large
square, of size / X /, is eliminated in the centre of each larger square (figure 1(2)) yields

¢ =fl(b—1—1f(®) +2f () + (- D] 4.1
ty =) 16 — 1= 22171 + £ A) + [ - DL (D) (4.2)
Note that within Migdal's approximation the recursion relations are within the two-

dimensional parameter space (¢, t,.). In the particular case | = 0 we recover the d =2
results, The (7, 1,)-coordinates of the fixed points are

A:(0,0)  B:(0,1) C:(,1) E(E1  E(¢ ). (4.3)

We find three distinct flow diagrams, in the (¢, £, )-space, as shown in figure 4. Figure
4(a) shows the special case b =3, /=1, which differs from all the cases with b =
[+ 2> 3.Figures4(b) and 4(c) correspondto b ={+2=Tandb >+ 2(b=7,1=3),
respectively. As we vary g, the critical line is displaced but the overall picture is the
same. Thus the qualitative phase diagrams obtained are similar for any number of Potts
states.

In addition to this analysis, we iterated the recursion relations numerically and
identified the locations of the fixed points E and F and their associated exponents. The
numerical results are summarized in table 3. For each pair of b and /, and for several
values of g {(where the MK approximation predicts a second-order phase transition), the
table lists D, ¢E and the exponents near E, the coordinates of F and the exponents near
F, and the critical value £, at which the critical line crosses the diagonal (¢, =t = ¢,).

A genperal result obtained from this calculation is the monotonic variation in the
critical exponents and critical temperature with the fractal dimension, as shown in the
previous section. One exception is the special case b =3, I = 1, where the exponent
associated with F does not obey the monotonic decreases with g.

If we had focused on small-lacunarity carpets, where the eliminated subsquares are .
uniformly distributed throughout each square (figure 1(b)), then we would have found,
instead of (4.1) and (4.2), recursion relations of the following form:

¢ =)+ (b - D)) (4.4)
te = fIFH) + (b = I~ DR (4.5)



Dilute Potts model on fractal lattices 1735

Table 3, Results for the Potts model on Sierpinski carpets with central cut-outs.

b I D g ° ¥E f tf ¥E L
31 1.893 2 04354 0.5976 1 2.944 x 107%  0.9998 0.6827
3 04027 0.6587 1 2.509 X 107%  0.9998 0.6414
4  0.3795 Q.7028 1 2,145 % 107 0.9998 0.6119
7 3 1.8% 2  0.6267 0.6015 0.7254 0.3%65 0.5988 0.7013
3 0.5976 0.6352 0.6977 0.3346 0.6497 0.6729
4 0.5766 0.6928 0.6776 0.2997 0.6853 0.6525
75 1.633 2 0,682 0.3466 0.2552 0.1297 0.3466 0.2551
30,1588 03723 0.237  0.1152 0.3723 0.2374
4 0.1515 0.3931 0.2242  (.1047 0.3931 0.2241
11 3 19567 2 07838 0.6629 0.8119 0.4745 0.6576 0.801¢0
3 0.7631 0.7188 0.7925 0.4181 0.7119 0.7809
4 0.7482 0.7576 07785 0.3789 0.7497 0.7665
11 5 1903 2 07098 0.5943 0.,7552 (.4380 0.5883 0.7469
3 0.6853 0.6432 0.7314 0.3863 0.6350 0.7234
4 0.6675 0.6772 0.7142 0.3506 0.6674 0.7063
11 ¢ 1538 2 01003 0.2862 0.1256 6.307 x 10?7 0.2847 0.1256
3 9,645 x 107 03014 0.1199 5.865x 1072 03023 0.1199
4 9317 x 1072 03144 0.1152 5.509x 1077 0.3170 0.1152

Figure 5. Phase diagram for a Sierpinski carpet
A 0 with a scattered cut-out: b =7, I =3 (cf figure
0 1t (BY).

These relations have been obtained for the case [ = (b — 1)/2. The qualitative phase
diagram obtained in the low lacunarity case is shown in figure 5. Although this figure
was calculated for b = 7 and [ = 3, which has the same values as figure 4(c), the fixed
point F now lies on the r=1 axis. An analysis similar to that presented for large-
lacunarity carpets, together with numertcal calculations, yields table 4. We note the
variation in the critical exponents when we keep D constant and vary L. Thus the
exponent »F increases as L decreases.

For the Potts model in the presence of a bond inhomogeneity, randt, are independent
random variables distributed according to the following probability laws:

P() = (1 — p)o(r) + po(r ~ 1) (4.6)
P(ty) = (1 — pw)o(ty) + pyS(ty, — tup) (4.7)

where p and p,, are the bond concentrations for ¢ and ¢,, respectively. The renor-
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Table 4. Results for the Potts model on Sierpinski carpets where L was calculated according

to (2.2) and (2.3).

b ¢ D L q I vk £ 13 % L

"7 03 1896 39377 2 0.6267 06015 07254 0.3865 0.5988 0.7013
3 05976 06552 0.6977 03346 0.6497 0.6729
4 05766 06928 06776 02997 0.6853 06525

7 3 189 0998 2 05675 05922 1 0.6031 04504 0.8006
3 0591 06480 1 0.5675 0.4931 0.T753
4 05186 0.6878 1 0.5420 0.5231 0.7570

1t 5 1503 24039 2 07098 05943 07552 0.4380 0.5883 0.7469
3 06853 06432 07314 03863 06350 0.7234
4 06675 06772 07142 03506 0.6674 07063

11 5 1903 39006 2 06519 0590 1 0.6998 0.4987 0.8470
306275 06491 1 06701 05452 0.8283
4

0.6098 0.6867 1 0.6488 0.5781 0.8148

malization procedure transforms P(¢) and P(z,) into P'(¢") and P’(z,,) which are of more
complicated forms than the initial distributions. We approximate the transformed dis-
tributions by those having the initial forms

P ippran (') = (1 = p")O(") + p'&(" — 13) (4.8)
P opprox (10} = (1= pu)(e5) + pldlty — ta0)- (4.9)

This enables us to obtain the recursion relations for the variables p, p,., t and t,,. For the
case b = 3, ! = ] the recursion relations are

p'=1-010-p1-p*p.)? (4.10)
pw=1-(1-pi)1~p?p,) (4.11)
p't = p pL (@) + 2f ()] + ptpi (1 - )21 ()

+2p°p (1 = pPp )fLf () + £ (e, )]

+2pp, (3 - pPY(1 — PP (P))

+ P31 = pPp I ()] (4.12)
pute =P oL FIFHE) + 2] + prpa(1 — pFI (A0
+p3 (1= PP )] (4.13)

where we have dropped the subscript 0 for simplification.
Flows in a four-dimensional parameter space are not easy to visualize. To get a better
understanding we shall consider some special subspaces.

(1) Subspace p = 1, p,, = 1. This corresponds to the pure system.
(if) Subspace t = 1, ¢, = 1. The recursion relations (4.12) and (4.13) reduce, in this
case, 1o (4.10) and (4.11) which deseribe the percolation behaviour. The same effect is
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Figure 6. Phase diagrams in the {p, p,)-space: (g) b=3,/=1; (b) b=7, I=3 (large
lacunarity); (¢} b = 7, { = 3 (small lacunarity).

Table 5. Fixed points and critical exponents characterizing bond percolation behaviour in
the (p, p,)-space.

L b 1 Fixed points Critical exponents p. = p = p,
(E) p=0.4893 yp=10.4987
Pu=1
lLarge 3 1 : p.=0.7508
(F) p=1 =1
=0
(E) p=0.6740 ye = 0.5101
=1
Large 7 3 P, = 0.7480
(F) p=10.7699 yp=0.4891
P = 0.4795
(E) p=0.6136 yp = 0.5001
p=1
Small 7 3 pe = 0.8420
(F) p= yp=0.3783
P = 0.6618

found for b =7 and { =3, for both large- and small-lacunarity families. The cor-
responding flow diagrams represented in figure 6 show a striking similarity to those of
the pure system (figures 4 and 5). There are two non-trivial fixed points characterizing
the percolation behaviour whose coordinates and corresponding critical exponents are
givenintable 5. When b = 7and! = 3, for example, the small- and large-lacunarity cases
are described by different bond percolation fixed points p, and different eigenvalue
exponents y,. We note also their variation, when we keep D constant and vary L, similar
to that of £, and y,for the pure system.

(iii) Subspace p = p,. Inthis case, bond concentrations for 7 and ¢, are equal. Asp =
1is an invariant subspace, the ¢- and #,,-coordinates of the two non-trivial fixed points
listed int tables 3 and 4 are not modified. The coordinates and critical exponents of the
new fixed points characterizing the percolation behaviour are listed in table 6 for the
case b = 3 and ! = 1. The qualitative phase diagram in the (7, ¢,,, p)-space, given by the
recursion relations (4.10)-(4.13), is represented in figure 7. We find that the fixed points
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Table 6. Fixed points and critical exponents characterizing bond percolation behaviour in
the (¢, t,, p)-space forb =3andi=1.

b i Fixed points Critical exponents
t=0
(G) =0 yp=0.6082
p=0.6823
3 1
t=1
(H) te=1 yr=0.6082
p =0.6823
t
H
E_
B \ C
oD

Figure 7. Phase diagram in the (¢, £,, p)-space for
(] b=3and/=1.

F and G of coordinates (¥, ¢f, 1) and (0, 0, p€) characterize two transition surfaces. At
a point of these surfaces the system exhibits a transition between the phases C(1, 1, 1),
0(0,0,0) and A(0,0,1), O(0, 0,0), respectively. The fixed points E(t%, 1, 1) and
H(1, 1, p") represent transition lines at &, = 1 and ¢ = 1, respectively.

5. Conclusion

We have performed a renormalization group analysis for a dilute Potts model on
Sierpinski carpets. We have investigated the influence of bond dilution on the phase
diagrams and we have calculated the dependence of the critical exponents upon fractal
dimension and lacunarity. We found that the diluted system and percolation behaviour
ischaracterized by a bond percolation fixed point and its associated eigenvalue exponent,
whose variation with fractal geometries is similar to that of the critical temperature and
thermal exponent shown previously for both the Ising and the Potts models,
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